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BACKGROUND

 

Taxiing from the runway to the gate or from the gate to 
the runway is the phase of commercial flight that is least 
automated. Since 1972, 11 runway accidents have 
claimed 719 lives, not counting the accident in Italy in 
the fall of 2001. Runway incursions have increased 15% 
per year for the last four years in the U.S. alone. The 
bulk of this increase is attributed to “pilot deviations,” 
that is, errors made by the flight crew (captain and first 
officer). Thus, the problem of errors made during taxiing 
is a significant issue.

NASA Ames conducted several studies of taxiing in 
their high-fidelity flight simulator (e.g. Hooey, Foyle, 
Andre, & Parke, 2000). Flight crews flew into Chicago 
O’Hare airport with simulated dense fog with 700’ 
visibility. The error rate was fairly high, with crews 
making at least one “major” error on 22% of the trials. 
These errors were classified on the basis of videotape 
protocols into three types:

• Communication errors. These are errors involving 
forming an incorrect intent or failures to understand or 
communicate route correctly. For example, if the route 
given to the crew was misheard or miscommunicated 
between the crewmembers, the error was classified as a 
communication error.

• Decision errors. These were errors involving making 
an incorrect decision at a turn point. For example, if the 
crew turned left where they were supposed to turn right, 
then the error was likely a decision error.

• Execution errors. These errors involved failing to 
correctly execute a turn maneuver or otherwise navigate 
an intersection. This included errors like following the 
wrong lead line or misinterpreting signage.

Follow-up studies showed that advanced cockpit 
technologies such as an electronic moving map (EMM) 
or a heads-up display (HUD) showing the correct route 
significantly reduced the error rate. However, these 
technologies are expensive and unlikely to make it into 
commercial cockpits anytime in the near future. The 
research here was motivated by the need to understand 

the ultimate sources of error and to try to generate 
predictive models, and possibly suggest ways of 
remediating error.

 

MODELING APPROACH AND MODEL

 

Our approach was to attempt to unify computational 
cognitive modeling in ACT-R/PM (e.g. Byrne & 
Anderson, 2001) with detailed environmental analysis 
(e.g. . We believe both of these methodologies are now 
advanced and formalized enough that they can be 
fruitfully merged. From the perspective of the ACT-R/
PM model, the environmental analysis provides two 
things. First, it provides the model with a realistic 
environment of operation, such as realistic time 
constraints based on a model of physical aircraft 
dynamics. The environmental analysis and subject 
matter experts were also used to identify problem-
solving and decision-making strategies, as well as 
setting parameters such as success rates.

The model is an ACT-R/PM model, based on the 4.0 
version of ACT-R. This model is limited in scope in that 
we have only modeled the captain and not the first 
officer. Thus, the model has nothing to say about 
communication errors in this task. Also, many low-level 
details were omitted in the interest of time. In particular, 
the model does not include a detailed model of the 
motor actions necessary to steer the aircraft. The airport 
is modeled as a network of “rails” and the problem faced 
by the model is one of selecting the right “rail” for the 
plane to ride on.

The model has essentially two modes of operation: 
normal taxiing and intersection handling. During normal 
taxiing, i.e. following a single path between 
intersections, the model cycles through four critical 
maintenance tasks. These are:

• Look for incursions. The model scans the visual scene 
for anything that isn’t supposed to be there.

• Maintain speed. Aircraft speed control is more 
complex than in other systems like automobiles. 
Constant throttle/brake will either lead to deceleration or 
acceleration, so speed must be monitored and throttle/
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brake values adjusted on a regular basis. In the real task, 
this would also entail monitoring and correction of 
steering.

• Listen for holds. Planes are occasionally instructed by 
ground control to stop as they taxi to avoid collisions or 
alter traffic flow. The audio stream must thus be 
monitored to make sure a hold instruction is heard and 
followed.

• Update location. The model maintains a representation 
of its current location, and this location needs to be up-
to-date as the plane moves in order for decision 
procedures to make appropriate turn decisions.

In the course of doing these tasks, the model may note 
that an intersection is approaching, which means the 
model must deal with the pending intersection. This 
decision is a two-stage process. The first step is deciding 
whether or not the intersection is one at which a turn is 
required. Second, if a turn is required, which turn should 
be taken?

Deciding on whether a turn should be made is fairly 
straightforward. For example, if the intersection is a 
“T”, then a turn will clearly be required. Otherwise, the 
model generally relies on its memory for the taxi route 
to make this decision. As there was little evidence for 
this kind of error in the data, the model makes few errors 
here.

If a turn is required, then the model is forced to make a 
more complex decision, which is deciding which of the 
available turns to take. The model has several decision 
strategies available to it, and chooses between them on 
the basis of time remaining and strategy accuracy. Time 
is critical in this task, as the amount of time the model 
has to make the decision can be quite short, on the order 
of a few seconds. The amount of time available is 
dependent on a number of factors that are essentially 
external to the cognitive model, such as the braking 
dynamics of the aircraft, placement of taxiway signage, 
and taxiway geometry. For example, sharper turns 
require more slowing, and thus have a shorter decision 
horizon. Thus, having an accurate environmental model 
is critical in determining the cognitive model’s behavior.

There are several decision-making strategies or 
heuristics available to the model. The fastest and least 
accurate is for the model to simply to attempt to retrieve 
from memory the direction of the turn. This is 
inaccurate for multiple reasons, the first of which is that 
the original taxi route is simply presented as a sequence 
of taxiway names which did not include turn directions. 

Second, of course, is that retrievals are themselves not 
perfectly reliable.

Another heuristic is essentially hill-climbing. That is, 
take the turn that seems to be most in the direction of the 
goal, which in this case is the gate. Our subject matter 
experts (SME) indicated that there are essentially two 
things they always try to know: current position and 
location of the gate. Thus, given these two pieces of 
information, this type of hill-climbing is always 
possible. This computation is not as rapid as a simple 
retrieval and is surprisingly accurate. We call this 
strategy the TT strategy for “toward terminal.”

Another heuristic we derived from a combination of 
discussions with SMEs and an analysis of the task 
environment. If the airport is considered from a birds-
eye view on an XY grid, progress down a taxiway 
changes the distance from the current location to the 
goal in either the X or Y direction (or both, but usually 
one is dominant). At the turn point, this heuristic selects 
the direction which will reduce the distance to the goal 
in the other axis. For example, if the plane is heading 
west and forced with a north-south choice, and the plane 
is currently north of the gate, the model will turn south. 
This is subtly different than simply turning toward the 
terminal, and is both more accurate and takes longer to 
compute. We term this the “XY” heuristic.

The “ultimate” decision strategy, and also the slowest, is 
for the model to consult the Jeppesen chart, which is a 
paper map of the airport. This is very slow, and while 
generally accurate, it is not certain to produce the 
correct result because of the difficulty in mapping from 
a 2D birds-eye map to a 3D self-centered world.

To gauge the accuracy of our intermediate heuristics, we 
had an SME indicate the typical taxi routes at a number 
of airports other than O’Hare, including Dallas, Miami, 
New York JFK, Atlanta, Los Angeles, Seattle, San 
Francisco, and Denver. From those routes, we 
determined the accuracy of the TT and XY heuristics at 
various airports. Across all airports, the TT strategy 
produces the correct decision 81% of the time and the 
XY heuristic 94% of the time. However, at O’Hare these 
heuristics are not as accurate, with TT producing the 
correct turn only 69% of the time. XY is still quite 
effective at O’Hare, producing correct responses 93% of 
the time. This reduction is due to the complex layout of 
O’Hare which entails a great deal of backtracking.

These effects are further magnified by the complexity of 
O’Hare, as the average number of turns that must be 
made across all of these airports is 4.1, while at O’Hare 
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the average number of turns per route is 6.6. 
Interestingly, there are two turns in the corpus from the 
NASA experiment where both of these heuristics fail, 
and at both of these locations at least one error was 
made by the subjects.

The cognitive model is augmented with not only a 
model of the visual environment, which was based on 
the database used to drive the NASA simulator, but a 
model of the physical aircraft dynamics as well. This 
model was based on an approximate model of vehicle 
dynamics borrowed from Salvucci (2001) which is an 
automobile model. This model was adjusted based on 
thrust and weight specifications obtained from Boeing, 
then adjusted based on physics first principles given that 
the car approximation breaks down in certain places for 
an aircraft. This physical model is used to determining 
braking and acceleration response to inputs from the 
cognitive model, and was compared to empirical 
braking and acceleration data published by NASA 
(Cheng, Sharma, & Foyle, 2001).

 

ERROR BEHAVIOR

 

While the original experiment is not a sample large 
enough to produce data to which specific fitting would 
be appropriate, we do believe the model sheds some 
insight on the ultimate sources of error in this task. 
There are two major sources of error in this model. One 
is a fairly traditional source of errors in ACT-R models, 
which is failure of retrieval or mis-retrieval of various 
pieces of knowledge. This is not a particularly 
systematic error source, though it is sensitive to the 
amount of cognitive workload with higher workload 
yielding both slower and less accurate retrieval. A more 
systematic error source is the time/accuracy tradeoff in 
decision-making. Strategies that take less time are also 
less accurate, and the task often has entails tight time 
constraints. There are other secondary sources of error, 
such as the model failing to see a necessary sign in the 
time provided, which is really a secondary effect of the 
time pressure. 

The model thus provides at least an explanation of the 
decision errors described in the original NASA data set. 
We believe that some of the execution errors could be 
modeled in a straightforward manner by degrading the 
perceptual inputs to the model. While we have not yet 
done that, there is not an in-principle barrier to doing so, 
as ACT-R/PM contains mechanisms for handling 
degraded perceptual input. 

 

FUTURE WORK

 

Pieces of this work are still unfinished. First of all, we 
would like to get the system optimized enough to run 
Monte Carlo simulations to determine parameter 
sensitivity. As mentioned, we would also like to 
experiment with degraded perceptual inputs. Further 
examinations that might be possible are explorations of 
other decision-making strategies and adding a second 
model, which would be a model of the first officer in this 
task.
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